

Real-Time Distributed Communication

Open Systems Project Engineering Conference (OSPEC)

FY 98 Status Review

29 April - 1 May 1998

John Brennan
Naval Undersea Warfare Center
W. Douglas Findley
Raytheon Systems Company
B. Craig Meyers
Software Engineering Institute

OUTLINE

- Project Description/Tasks
- Goals/Pay-off/Impact
- Key Results
- Schedules
- Issues
- Recommendations
- Question & Answers

PROJECT DESCRIPTION/TASKS

PROBLEM DESCRIPTION:

- Embedded Systems unaffordable because:
 - Proprietary systems limit potential sources and do not leverage industry-funded advances
 - Application software not isolated from underlying hardware
- Result is expensive development, production, and support

APPROACH:

- Develop a standardized interface for real-time distributed communications facilities to:
 - Enable application portability at the source-code level
 - Allow commercial vendors to build open systems components
 - Provide infrastructure to support software interoperability between DoD systems
- Result is more affordable systems

APPLICATIONS:

- Joint Strike Fighter
- Aegis Combat System
- Cooperative Engagement Capability

TASKS:

- Attain approval of 1003.21 Standard
- Update prototype's APIs for consistency with standard
- Extend Raytheon prototype to include more P1003.21 functionality

The GOA Framework

- The Generic Open Architecture (GOA) Framework helps pinpoint critical system interfaces
 - Allows system components to evolve independently
 - Increases portability, reuseability of all components of system
 - Interfaces include Application Program Interface (API) as well as hardware layer
 - Defined by the Society of Automotive Engineers (SAE)
 Avionics Systems-5 working group
- The GOA Framework is incorporated in the Weapons Systems Emerging Standard section of the JTA
- POSIX Real-Time Distributed Systems Communication
 P1003.21 is a 4D level interface

P1003.21 and GOA

P1003. 21 is 4D level I/F

- 4L Applications Logical Peer IFs
- 4D Applications-to-System Services Direct IFs
- 3L System Services Logical Peer IFs
- 3D Sys. Services SW-to-Resource Access Services Direct IFs 1D
- 3X OS Services-to-XOS Services Direct IFs

- 2L Resource Access Services Logical Peer IFs
- 2D Resource Access Serv.-to-Phys. Resources Direct IFs
- 1L Physical Resources Logical Peer IFs
 - Physical Resources-to-Physical Resources Direct IFs

GOALS/PAY-OFFS/IMPACT

Goals of P1003.21:

- Provide a standard API for distributed systems communication which supports a wide range of real-time applications
 - Incorporation of real-time features, such as message priorities, buffer management, and asynchronous interactions
 - Incorporation of communications models beyond P1003.1g (Protocol Independent Interfaces - sockets), including unicast, multicast, broadcast, and labeled messages
 - Ability to utilize faster and better protocols as they are developed without affecting application source code
- Involvement from government, industry, and academia

GOALS/PAY-OFFS/IMPACT

Pay-offs/Impact of P1003.21:

- Increased portability of application software
- P1003.21 provides infrastructure for interoperability
 - Applications can define structure of messages (4L)
- Potential infrastructure for real-time distributed objects
 - Distributed Object Technology (Common Object Request Broker Architecture - CORBA)
- Reduced cost of DoD distributed systems (due to increased software reuse)
- Meets needs of real-time community
- Versatile design models for message-passing systems

KEY RESULTS

Project Participants Have:

- Provided an estimated 6 man years of support to the development of the 1003.21 standard.
- Prototyped and demonstrated subsets of the IEEE 1003.21
 POSIX API in both Ada and C
- Shown feasibility and quantified overhead of using standard POSIX API vs. Raytheon proprietary API
- Developed and made public a web-based tool used for ballot resolution
 - (http://www.sei.cmu.edu/technology/dynamic_systems/standards/posix.21.html)
- Developed a draft Real-time Avionics Profile (RAP) of POSIX standards

IMPLEMENTATIONS

- Three different prototypes have been developed:
 - Ada implementation for MIL-STD-1750A processors communication over Pibus
 - Quantified overhead costs of P1003.21 (<7% add'l overhead)
 - Implemented using a proprietary OS
 - C Implementation for Sun workstations communicating over Ethernet
 - Implemented using COTS OS (Solaris/SunOS/HP-UX/IRIX/Linux)
 - C implementation for COTS processors (PowerPC) communicating over Compact PCI and Fibrechannel
 - Implemented using COTS OS (VxWorks)

IMPLEMENTATIONS

- Lockheed Martin's Coms-X® provides C P1003.21 interface
 - Ada interface has not been released
 - Network support includes Ethernet, FDDI, ATM and proprietary protocols
 - Hosted on Solaris/SunOS/HP-UX

RaytheceMBEDDED COMPUTER PERFORMANCE MEASUREMENT (ECPM)

PROCESSING MEASUREMENTS

- ■I/O throughput performance difference between TI NOS and P1003.21 NOS approximately 23.50%
- **CPU** throughput performance difference between TI NOS and P1003.21 NOS approximately 0.16%

INDIVIDUAL OPERATION TIMING MEASUREMENTS (IN SECONDS)

- Average difference between TI NOS and P1003.21 NOS message round-trip time: 4.76%
- Average difference between TI NOS and P1003.21 NOS setup time: 183%

STATIC MEMORY SIZE (BYTES)

- ■Difference between TI NOS and P1003.21 OS code size: 5.26%
- Difference between TI NOS and P1003.21 OS data size: 0.28%
- Difference between TI NOS and P1003.21 NAV code size: 4.21%
- Difference between TI NOS and P1003.21 NAV data size: 3.81%

Real-time Avionics Profile (RAP) Coverage

	# of POSIX Options used by RAP								
	.1	.1b	.1c	.1d	.1h	.1m	.21	%Coverage	
RAP	7	14	7	5	2	1	1	Stds	All
VxWorks	2	10	0	0	0	0	0	42.9	32.4
LynxOS	7	13	2	0	0	0	0	78.6	59.5
Chorus	1	6	5	0	0	0	0	42.9	32.4
QNX	5	7	5	2	0	0	0	60.7	51.4
Power/UX	7	13	0	0	0	0	0	71.4	54.1
Std?	Yes	Yes	Yes	No	No	No	No		

IEEE STANDARDIZATION **PROCESS & STATUS**

8/92

Submit PAR

Approve PAR

3/93

1/93

Organize Working Group

Develop **Draft Standard**

Ballot Draft Standard

Approve **Draft Standard**

Publish Approved Standard 10/96 Completed

1st Ballot

Schedul ed 5/98

2nd Ballot

International Standardization

CURRENT ORGANIZATIONS REPRESENTED IN P1003.21

- Johns Hopkins University Applied Physics Lab
- Lockheed-Martin
- MITRE Corporation
- Naval Undersea Warfare Center, Newport
- Raytheon Systems Company
- Software Engineering Institute, Carnegie-Mellon University
- U.S. Army Tank-Automotive Research Development and Engineering Center (TARDEC)

PROJECT SCHEDULE

ISSUES

- Goal is to achieve approval of P1003.21 within 2 years
- Additional vendor support of P1003.21
 - Emerging standards development efforts declining
- P1003.21 is a stand-alone POSIX standard
 - Core POSIX standard is all standards and approved Project Authorization Requests (PARs) in January, 1998
 - C language binding PAR for P1003.21 just approved
 - P1003.21 does have an approved Ada PAR
 - Core standard can be modified by PASC in the future

RECOMMENDATIONS

- Continue standard-based prototypes
 - P1003.21
 - Continue prototype development toward a full RAP implementation
- Explore use of P1003.21 in other domains (e.g. CORBA)
- Continue support for standards activities
 - P1003.21 Ada and C bindings
 - Additional required services (e.g. light-weight directory service agent)
- Additional recommendations to be made at end of project

SUMMARY

- Participants have long history of supporting open systems including POSIX, SAE and OMG
- Standardization of real-time distributed communication interface:
 - Facilitates portability of application software key to affordability
 - Provides infrastructure for interoperability
- Standardization allows more re-use of application software and stability
- P1003.21 provides flexibility
- Consistent funding and support required to publish international standard

Question & Answer

BACKUPS

CORPORATE & GOVERNMENT INVOLVEMENT (WORKING GROUP MEMBERS PROMOTING STD)

- CHAIR
 - B. Craig Meyer, SEI
- VICE-CHAIR
 - Shirley Bockstahler-Brandt, JHUAPL
- TECHNICAL EDITOR
 - John Brennan, NUWC, Newport
 - Bill Pollak, SEI
- BALLOT COORDINATOR
 - TBD
- INTERNATIONAL STANDARDS LIAISON
 - TBD

Submit PAR

Approve PAR

Organize
Working Group

Develop

Draft Standard

Ballot Draft Standard

Approve Draft Standard

Publish Approved Standard

BENEFICIARY POINTS OF CONTACT

- Software Engineering Institute
 - B. Craig Meyers
 - **-** 412-268-6523
 - bcm@sei.cmu.edu
 - Carnegie Mellon University
 Pittsburgh, PA 15213
- Raytheon Systems Company
 - W. Douglas Findley, Jr.
 - 214-575-5448
 - wdfindley@rtis.ray.com
 - 6600 Chase Oaks Blvd.
 M/S 8447
 Plano, TX 75023

- P1003.21 Working Group Technical Editor
 - John W Brennan Jr
 - 401-832-2649
 - brennanjw@csd.npt.nuwc.navy.mil
 - Naval Undersea Warfare Center Division Newport
 - Code 2233, Bldg. 1171/2
 - Newport, RI 02841

UNDERSTANDING IEEE STANDARDIZATION

Project Authorization Request (PAR)

- Valid for Four Years
 - Standard "shall"
- Recommended Practice "should"
- Guide "may"

Types

- New
- Revision
 - Supplement

Numbering

- Separate, but related ---1003.#
 - base + number
 - Supplements/amendments --- 1003.a
 - base + letter

1003.21 RT Distributed Communication

Submit PAR

Approve PAR

Organize
Working Group

Develop Draft Standard

Ballot Draft Standard

Approve Draft Standard

Publish Approved Standard

IEEE 1003.21 RTDSC CATEGORIES

- Initialization
- Asynchronous Operations
- Buffer Management
- Endpoint Management
- Directory Services
- General Data Transfer
- Unicast

- Broadcast
- Event Management
- Protocol Management
- Labeled Messages
- Multicast Groups
- Connection Management
- Termination

IEEE 1003.21 RTDSC

- Sending Messages from Endpoint to Endpoint
- Endpoints May be Shared Among Threads in a Process
- Buffer Management allows Application Control of Memory Allocation

P1003.21 MESSAGE TYPES MODEL

P1003.21 PROTOTYPE

- Objective: Support critical JSF milestones:
 - Selection of JSF core processor operating system
 - Demonstrate operating system concepts
- Approach:
 - Prototyped subset of P1003.21 API using TI Reconfigurable Network
 Operating System (NOS) as the underlying protocol
 - Chose subset that (1) performs basic message passing and (2) contains operations analogous to TI NOS operations
 - Collected timing and memory size measurements at the system level, as well as for individual operations, for both P1003.21 and TI NOS implementations

P1003.21 PROTOTYPE, cont.

Outputs:

- Measurements to assist in determining POSIX applicability to next generation real-time avionics computing performance requirements
- Measurements will also provide feedback to IEEE P1003.21 working group to fine-tune development of specification
- Recommendations for tailoring P1003.21 for real-time avionics systems

CONCLUSIONS

- Real-Time avionics systems do not require all procedure calls currently specified in P1003.21
- P1003.21 API does not add a large amount of overhead
- Quality of API implementation is greatest factor in performance and sizing measurements
- Additional experiments recommended
 - Prototype other P1003.21 communication models